Category Archives: Edutainment

Shifting Ways of Science

Interstellar. Credit: Paramount Pictures/ Warner Bros

If one falls into a black hole, what would one encounter? Well, from our recollection of the movie Interstellar—Cooper (Matthew McConaughey) ended up in a tesseract, a 4-dimensional object, via which he made it back to his own 3-D world—we would hope to plod out through a higher dimension, as if making a choice back into a familiar world. But there’s a catch—a lot of!

Tesseract is a 4-dimensional object (mathematical, so far! Helping us understand deep details in modern physics). The higher-dimension—via which Cooper connected to another Cooper (Murph, his daughter)—implies stacking of a zillion spacetime points on top of each other. Remember the bookshelf behind which Cooper stood? But accessing higher dimension also means that you be part of the higher-dimension; you be manifest as higher dimension.

Tesseract

The first catch. There would be as many Coopers, both Coopers (father and daughter), as many as the innumerable book-shelfs, the books in them, and the watch that is relaying the message to the daughter. Anything as a 3-dimensional embodiment would be presented as all spacetime points up until the current one. All past spacetime points stacked up until then; that’s how Cooper accessed the past. In that higher-dimension he had all information timeline, that’s every “time” point—more accurately as Einstein had shown “spacetime”  point—arranged discretely, from his past to his current. That many “Coopers,” though accurately put, would have given a flustered set-up, demanding more questions, as well as the associated theoretical premise. All valid, that’s how science progresses. More answers we find, more questions become apparent. The movie, although fictional, relays various significant current theoretical understanding of how spacetime manifests and flows, and all the information inherently brings up new uncharted territory of questions.

All valid, that’s how science progresses. More answers we find, more questions become apparent.

We have come unimaginably far in scientific understanding of how the universe works, and operates. But never in the past had we as many conundrums rearing their heads as we have today. From black holes, dilemmas of event horizon, dark matter, dark energy to perpetually expanding universe, its origins and parallel forms, to the spacetime unifying principles, the picture that unifies gravity and quantum depiction, and what current theoretical understanding relay, especially the mathematical ones, like string theory and loop quantum gravity. All our findings to date must fall into a single unitary phenomenon. Our quest is how? Answers to our inquiries come with a package of additional set of questions, and off we march in all directions. Healthy feat!

We have come unimaginably far in scientific understanding of how the universe works, and operates. But never in the past we had as many conundrums rearing their heads as we have today.

Following a short stint at the Antibody Society, to scientific outreach their mission and goals, I landed myself in a specialized somewhat recently founded company Quantum-Si (Q-Si). My current interest in scientific communication and outreach is part of the reason how I got here. As Q-Si prepares to launch its first-of-a-kind protein sequencing instrument, a brief overview here would help us see how we navigate the current scientific quests and find answers to inquiries that would aid research and development. Q-Si technology stems from a multifaceted scientific endeavor that involves strategic developments of pixelated semi-conductor chip, which allows the parallel processing (thus the given name “Quantum;” although not a 100 % sure that’s where the name is coming from) of miniaturized wells to read individual peptides at an amino acid level resolution. Amino acid is a molecular building block of protein, and there are 20 different kinds of them. The technology combines customizations of chip, electrical circuitry, waveguide—as in fiber optics—laser pulsation, and fluorescent signals to read biophysical interaction. Multifaceted, because the single experiment subsumes fine fields of physics, engineering, biophysics, and if you want to see too far, mathematics, to follow a biological undertaking, or knowing something that could be of clinical relevance.

Multifaceted, because the single experiment subsumes fine fields of physics, engineering, biophysics, and if you want to see too far, mathematics, to follow a biological undertaking

Only a few decades earlier it wouldn’t have been possible to carry out something as complex that agglomerates and fine tunes discrete branches in science. But in the scientific landscape we have advanced to a level where the boundaries between specialized scientific fields are hazy. Soon after joining Q-Si, I have begun to realize how important it’s to have current awareness of all basic fields in order to not just carry out a given task, but also to appreciate the beauty that can be realized only when we see the integrated picture; not just a single aspect of it. To that end, I had reached out to a Physics magazine on my desire to shape a short note titled Teach Physics to Life Science Students. Will keep you posted on how that goes. But the point is in the current science landscape it’s imperative that we have a handle of basic understanding of all core areas in order to reach further, or even to appreciate the developments.

Colliding Black Holes, 1.3 Billion Light Years Away

The detection of gravitational waves, the existence of which Einstein had predicted in 1916, in 2015 was the landmark of ultra-precision measurement in scientific experimentation. The measurement entailed detecting a sub-atomic level length change that occurred due to the collision of two black holes 1.3 billion light years away, meaning time it took for light to reach us to tell that happenstance. An arduous scientific feat was achieved. Incredible!            

The measurement entailed detecting a sub-atomic level length change that occurred due to the collision of two black holes 1.3 billion light years away

Every scientific branch geometrically expands, collide and bump into each other, and eventually, if we continue to progress, inevitably unite into a solitary landscape or phenomenon.

See you soon again,

Neeti.


Share this:

Getting back to blogging

After a pause of some two plus years, I’m inspired back into writing on this blog The Cosmic Landscape in Quantum Décor. The time sort of demands that the scientific outreach should be in some ways about things connected to the pandemic: the disease physiology; the viral mechanism; the long- & short-term impacts; the future projections; the cure development; the last, but not the least, the vaccines and its workings. In the today’s working of the world even physicist & mathematicians are pitching their intellectual skills on curbing the pandemic in ways that are novel & indeed needed. It’s an academic maneuvering how physics and mathematical tools can be utilized in contributing toward helping the pandemic. I have myself recently started working for The Antibody Society, and this is closest I came to helping toward bringing forth therapeutics or the related biological understanding. My work here involves scientific communication, liaising, and outreach, and I think there is thus some contribution, however slight, being made to the current scientific needs.

But as Brian Greene brought forth his Equation of the Day series: Entirely mathematical, and thus an outlook of physics, a premise that could be a pleasurable distraction that can bring a nerve calming comfort, at least for those who love physics, and even more so mathematics, for purely their beauty. Yes, I know you all find fascination in physics and mathematical equation just as much as in captivating words, painting, natural landscapes, and so forth. So, in coming back to my blog I would first revive all the back posts, which I wrote for their varied topics of enticing awe, while inviting us to learn something new about the world we inhabit. Most is to allure you into the beauty of mathematics, and its rendering of physics. The recent some of blog posts (will continue to post all in total of 3 batches):

Her walk, the way she smiled as she walked towards me. online viagra cialis Massage Therapy covers various therapeutic approaches and is working to improve the amerikabulteni.com generic sale viagra well-being and individual health. He or she could try to ask the couples to overcome the troubles associated with levitra tablets fertility. This herbal oil penetrates viagra online store deeper into the inner tissues and nerves.

In bringing on your allurement of mathematical beauty, I want to bring in one the most fascinating equations, if not the most awe-inspiring mathematical rendition:

Eulers_Id

Stunning isn’t it. Even at a purely visual level. It’s more than stunning for ones who see the dynamics displayed in it. Foremost, it weaves five most important mathematical constants relating to each other in a single fabric. That’s what makes this tonality phenomenal. It’s as if this mathematical rendering speaks of all of the mathematics in a most short-cut form possible.

The interrelating constants:

“e” is Euler’s constant, a transcendental number (in a coming post I may say more on this) & a base of natural logarithm, which emerges naturally in phenomena innumerable like finance, exponential growth, statistical distribution, and is an inextricable part of higher-level mathematics that describes the universe we inhabit.

“i” is an imaginary unit of a complex number with property i = √-1, yet another topic of interest we might talk on in later posts.

“π” is transcendental as well, defined as, we all know, ratio of circle’s circumference to its diameter.

“1” seemingly simple but consequential in mathematical equations and understanding physical reality.

& if you rephrase to

Euler_Id2

“0”, indeed one of the most cherished constants that gives a defined order in the dynamics of higher mathematics, or any mathematics as such (we all know that).

This equation is known as Euler’s identity that directly emerges from from Euler’s formula, which relates e to sine and cosine in the field of complex numbers, devised by Euler (Leonhard Euler) himself.

I will leave it here for you to soak up on this. Leave a comment on your say on it, & I’ll write back soon.

Thank you,

Neeti.

Share this:

Math Shaped

To prepare a talk for the upcoming MathFest, to be held in Chicago this year, I was ruminating over articulating a clean-cut yet telling narrative. Since the talk subject is on ways to effectively outreach mathematics to general audience, it should at least somewhat bring up core concepts of mathematics. Somehow allude to the essentiality of its graphical and revelatory power, compared to just an instrument to calculate. Meaning mixing in subtler forms of advanced math, even abstract ones. I am sensitive to oversimplifying anything (my take on popular writing). It’s like providing a forced picture—like peas and potato analogy of quantum and cosmic realms in The Theory of Everything—that is far from an actual picture, and importantly dampened down on beauty, and inspiration. The point of outreach is to convey the subject—its significance and elegance that lay in the eyes of those who swim in it—not recite a lullaby.  And in my experience audience from all backgrounds, even without math ones, show true enthusiasm only when prompted into intricate and advanced forms of mathematics, yearning for the real sense. It’s there where the real message is, of what mathematics actually is about.

In my experience outreaching an advanced scientific field effectively rests on two basic elements. First, tell it the way it is, don’t soften it. That’s the hard part because all those elaborate labyrinthine equations with functionalities, symbols, and notations floating all over them is the very thing that makes some of us flee. And thus the second, present them correlatively as physical entity: Numbers to space, Algebra to geometry, Calculus to continual smooth change, Group and matrices to potentiality of abstract objects, the list is endless, and that physics itself at the core is mathematics. All those preposterous looking equations are actually quite beautiful and insinuating if you understand that those terms are the pieces of the landscape. The tangled appearance of an equation, like Dirac’s, would dwindle away once one sees what a colossal argument the equation is making.

Dirac_eq

Persuasion in an outreach effort usually employs an object central to disseminating pronouncements of the subject. I have been thinking of having an actual physical object, and the top two in the list were tesseract and Calabi-Yau manifold. Tesseract represents four dimensional cube—Mathew McConaughey materializing in tesseract after he plunges into the black hole in the movie Interstellar, making tesseract currently an object of popular demand. Calabi-Yau manifold is a mathematical thing of a projective plane, surmising six dimensions. Both, thus, though may connect to reality in theoretical outlooks, cannot crystallize in our 3-D view. They are abstractions of mathematics, and stand to be significant (very) fully in their own right.

Having a real physical model in the talk, I thought, would be pedagogical, and a neat way to draw in enthusiasm. On simply googling tesseract I bumped into a 3-D printing enterprise shapeways, offering a model of tesseract (a beautiful one). (I didn’t look for Calabi-Yau model. Didn’t think it was possible to have a model of such an intricate complexity.) To my amazement, here they offered a Calabi-Yau 3-D printout as well, in different colors, snapshots, and sizes.

In conveying the actuality of mathematics with its ultra sophisticated developments, Calabi-Yau manifold can be an epitome that embodies conceptions of advanced algebra, cutting-edge geometry, mathematical abstractions, and advancements of modern physics all in one exhibit. And it is aesthetically pleasing as well. I got it from them.

In the check stock price of cialis 10mg event that you have been sexually idle for some time, then you may need to attempt a couple times before Suhagra will work for you. The incidence rate of soft cialis mastercard this problem is less than a dollar per pill. Can https://www.unica-web.com/watch/2010/list.html levitra prices interact with other medications? Yes generic medications of levitra can interact sometimes under the following broad categories: Neurological causes Vascular causes Hormonal reasons Pharmacological reasons Penile dysfunction Psychiatric reasons Functional reasons. The condition generally affects the male reproductive system and increase quality and quantity pfizer viagra mastercard of semen.

Here is the snapshot of the 3-D printout (Itself a 3-D snapshot of 6-D object). It was also nice to exchange a few productive words with Rick Russell—at the Shapeways, who generated this 3-D printout with an expert eye for math and its models—on this very enchanting object. Hope the audience will like the object as much as I do.

CY_Rot

The model emerges from the graphic that was originally rendered by A. Hanson, Indiana University, and it has done a phenomenal job in making its appearance from the nooks of abstract algebra articles, to academic and popular literature, to the explanations of modern physics. Somewhat surprised that it hasn’t shown up in the mainstream media, at least not yet.

Be back shortly,

Neeti.

Share this:

Einstein in Fiction

Starting with the elegance of mathematics, here is an article the followers of mathematics will like—the true patrons of ‪mathematics see its reality in the deep-seated concepts.

At the Book Expo America in Chicago this year, as I explored flamboyant publishing setups and flashy book banners, an interesting title The Other Einstein caught my attention, and I was pulled in. After noting that the title refers to Einstein’s wife Mitza Maric as the other Einstein, and that the story narrates of her own potentials in understanding the ways of spacetime that Albert Einstein set forth, I became somewhat curious. I decided to meet up with the author. Even though the book itself is a novel, for it touches spotless territory of spacetime that Einstein established, the story can be seen as rather bold. Anyway, there I was, inquisitive enough to get a copy.

OtherEinstein    PostIX

As I was handed a copy, I spoke briefly with the author on fictionalizing a landscape that is so firmly established and deeply revered, by scientists and laymen alike. The author had her takes on it for the extent of fictionalization, and I was curious enough to give it a try. Fiction isn’t my usual read. Barring a very few known titles, like by Paulo Coelho for instance, I haven’t read much in current fiction. As I said The Other Einstein drew me in, first to just get a copy at the BEA, and then to read it, for the obvious reason. Not only do I have a background in physics, I am an ardent proponent of physics and mathematics for exposing the reality we live in. And for these reasons I am deeply aware of Einstein’s contributions and his legacy, so much so that for me to see that his special relativity theory is referred as being conceived by someone else—even in fiction—seems almost sacrilegious. Having said that, the story is crafted well, and once I started it I was hooked to finish. If the aim was to formulate a page-turner, the title has it.

For us scientists it might have been nicer if the extent of fictionalization was in some way hinted. To the author’s acknowledgement, this fiction weaved some of the real historical bits—time, space etc. Author’s  efforts in assimilating Einstein’s theories, and the scientific structures on which they rest, as it’s penned in the fabric of storyline, is certainly appreciable.

Regular intake of carbohydrates makes the body balancing cialis pills wholesale find out address the energy level and developing harder erections in the bed. To know more about Diabetes Treatment and Stem Cell viagra cialis levitra therapy visit our website : giostar.com Nutritional supplements have always been a controversial subject. In some cases surgery is also done, that helps in look what i found viagra pill price clearing the vascular blockages. Fortunately, herbs in the nature have been collected by Ayurveda and products like 4T canada cialis levitra Plus capsules and Mast Mood oil for the great moments that you have been waiting in the again of your brain.

But the aficionados of pure physics/mathematics, or the sincere advocates of Einstein’s efforts, aren’t probably its best readership target.

See you all soon,

Neeti.

Share this:

Nonfiction Science

Pleased to see a sizable enthusiasm for the title Physical Laws of the Mathematical Universe: Who Are We? I had set a giveaway at the Goodreads, and was charmed to see so many avid readers of nonfiction science entered, while many tagged the title as to-be-read. I with fervor packaged individual copies, included short notes, and mailed them off. So yes the 10 winners should be receiving their copies shortly. It’s on the way. A short recap, the title discusses an overarching scheme of how the universe and its parallel forms, exist and continue, and how we ourselves are part of the continuum that physical sciences reverberate.

IMG_0108

I am still getting familiar with the Goodreads, and it is nice to find abundant science titles covered there, including many currently prominent science author profiles marking the widespread landscape of readership from all genres. Science surely has caught on as a choice read in recent times. Not science fiction, but the real hard core nonfiction science. If we cover its depths, the real science is far more awe inspiring, even mystical. Go into the depths of quantum mechanics, and you will see what I am implying. This isn’t to say that the creativity of fiction science is redundant. Fiction lets mind wander wherever it wants to wander. Nonfiction on the other hand gives so many fresh perspectives, and insights. Do take a look at the Goodreads for nonfiction. You may start from the few books I just commented on.

Popularity of nonfiction science isn’t as across-the-board on other places. I recently attended the illustrious Book Expo America 2016—mostly because my title Physical Laws of the Mathematical Universe was included for display at the Archway Publishing booth. Thousands of titles emblazoned the most prolific of booths—Simon and Schuster, Penguin, Random House, Harper Collins. A few nonfiction non-science titles caught my attention enough for me to mark them as to-be-read, and I have already read a couple of them, and they are engaging. But mostly, by nature and choice, I was inclined to scavenge for scientific tiles there. Thus the University booths, Oxford, Cambridge, Princeton, MIT, Chicago, Basic Books (known for publishing popular science titles in physical science; I have some very good titles from them) and a few others were a definite targets to be explored bit by bit. And I did get a bunch of interesting reads, and some good math fun books, but mostly hard core science (even popular) was missing across the whole show. The ones included were either in youth section, or very toned down popular. We need to go a little way to build up the real science ardor. I was swept with a feeling that my title at the Archway Publishing was perhaps the only one that extended into the serious scenes of physics and mathematics. I would still call it popular science. At the Simon and Schuster – Archway Publishing authors reception on the day two of the event, a few authors did tell me that they are going to read it!

It must be flexible enough to provide a major discuss considering age ranges cialis cheap uk additionally, the will need to produce attention over it is necessary. Here, the article reveals the secrets of maintaining contentment, joy and pleasure. viagra usa price Nevertheless, it is actually utilised in experience with monthly period cramping, headaches, muscle viagra prescription free tissue spasms, emotional stress , and digestive dysfunctions. It also helps to fight against erective dysfunctions and impotency. purchase cialis online browse content

PostIX

See you all soon,

Neeti.

Share this:

The Inter-Connection

I am back. This time it was a longer intermission, after many weeks of steady continuity. That regularity mostly had to do with my being urged on by the efficient Jaymie Shook of the Bohlsen group to write more routinely than I have been. The main reason behind that is to spread the word around on what the subject of my recently released book is about, and I hope I have done a somewhat convincing job.

On my march to spread the word, I also dared to take up something I have managed to cower from thus far—the social media. The thought that a social media presence is a must in order to fetch interest, and target right audience gave me willies. I am zealous about the subject, its scientific order, and mathematical views, love talking about it to an audience, in person, or over e-communication with the people I am acquainted with, and I am passionate to hear their views, what fascinates them most, and ideas. Shooting out tweets, and hurling jottings and condensed utterances on Facebook in a fully open landscape boundlessly seeped with all different opinions, interests, and intentions is something entirely different. And it gave me jitters! I guess such a reaction would be more common in people who have worked all their lives in structured environments of an academic setup, where you cave in comfortably within a premise, relatively sequestered from majority of the outside scenarios. It feels far less risky.

The notion of scientific outreach in an academic institution is itself a very modern, and indeed fruitful, thinking, and many able researchers have caught up with that very well, and take pleasure in popularizing science. Some launch their intellectual views right in the public arena, bypassing the slippage that would be encountered if gone to a specific collegiate field mostly for the interdisciplinarity of their viewpoints.

For the most part I too liked to be tucked in covers, within a well laid out premise. But our scientific quest has come to a point where moving forward necessarily involves large chunks of interdisciplinary views, and takes. And we all are acknowledging that the things are opening up within science, as well as outside of it. The comfort zone on its own is expanding, as we find ourselves plunging into it.

So there it was, I set up a twitter account and started tweeting, opened a Facebook page, and went buzzing, connected with Goodreads, and put up giveaways, and tried to be at LinkedIn more often. The exposure has been better than anticipated. And it is satisfying to see how many original thinkers, and established academics take time and effort to be there in a common open ground, constantly twitting, pitching and improvising. That most of the genuine organizations are in a constant update of their face, voice, and initiative. Their tone isn’t always as weighty, and the cadence at times exceedingly popularizing. And at times I have myself felt that they have gone a bit too far. But I think at a common level that incites to be curious and creative, and importantly there is a conduit to connect to them, and discover new and fascinating places that would have lay hidden without the cause of social media.

IMG_0041_TwitterIMG_FacebookIMG_LinkedIn

I connected to a few, and discovered many new. It is productive, informative, and in a strange way real. We discuss and follow numeric, abstract, real and mysterious ways to mathematics (and mathematicians!), the articulations of space-time, including about the recent discovery of gravitational waves, and the interconnected black holes, keep abreast of up-to-date scientific findings in all flavors, once in a while take in the humor part (which is mostly indispensable), philosophy (not the wacky type but the resolving kind that is essential) and indeed some of the current affair outside of science, and personal flavors.

Shedding hesitation is a tough work, but I guess it is worth pursuing one’s and parallel interests in the growing web of virtual space-time.

I am sure many of you already are trekking the cyber social landscape. You can join me there, on Twitter, Facebook, LinkedIn, GoodReads.

The cheapest levitra prices solution Kamagra 100mg allows one with the pleasure of having sex and with these problems no one could satisfy her that could destroy your relationship. Sildenafil Citrate’s focal points are an discount viagra unica-web.com extraordinary wellbeing track record and demonstrated reactions. This medicine is a kind of alternative medicine has come in the market. india viagra for sale Chewable and easy to swallow, cheapest cialis professional Kamagra Soft Tabs make an ideal choice for anyone who struggles to swallow tablets.

Also, don’t miss out on having a chance of grabbing a gift copy of my book. Find the “giveaway” in the widget area below. If you win one, I would very much welcome your response, thoughts, curiosities, and even a review. Thank you!

Let me know if you have any questions at nsinha@magnifieduniverse.com, or writemailac@yahoo.com.

Thanks!

See you all soon,

Neeti.

 

Share this:

The Title and its Storyline

Continued from the preceding post…

Foremost, we can’t keep from commemorating the 2016 Abel prize awarded to Andrew Wiles of Oxford University, for proving that the Fermat’s Last Theorem is indeed true (in the year 1995). Congratulations to Andrew Wiles, and Pierre de Fermat! Fermat did claim (in the 17th century) to have surmounted proving his own elegant equation by noting “I have discovered a truly marvelous proof of this, which this margin is too narrow to contain.” The methodology Andrew Wiles employed is too advanced for the time of Fermat. Inspired at the age of ten, Andrew Wiles decoded the mystery of Fermat’s Last Theorem in the year 1995, a truly uphill task that was interspersed with a humiliating pitfall that ultimately lead to the glory and catharsis, as his humbled tears rolled out upon meeting the wish.

Whether or not did he have the proof (we will never know), Fermat would have cheered the breakthrough, and recognition.

Here is my take on it:

Well, I am more excited than many, first because of the Oxford University backdrop in the recognition, but mostly because it involves the elegance and depth of Fermat’s Last theorem, and seeing it to be accurate.

I delight in the simplicity of its statement (the equation), yet the far reaching and deep insights it casts. I include the insightful cadence of this equation in my book.

The excerpt from the book, following which is the award link:

Excerpt, Pg. 56: Physical Laws of the Mathematical Universe: Who Are We? (about the book: www.magnifieduniverse.com/aboutbook)

“Fermat’s Last Theorem: An Enigma, or Not

For its blunt accuracy and transparency, even though we didn’t have a valid proof at the time it was stated, Fermat’s last theorem became a cliché mathematical citation, appearing regularly in didactic and popular genres alike.5,6 The statement is elegantly simple, but the meaning conveyed is both sharp and profound. Drafted by a French mathematician, Pierre de Fermat, in the year 1637, it states,

FigVI

              where n is the exponent of 3and up. The phrasing tells us that the sum of two exponentiations cannot give rise to an exponentiated entirety for the powers of three and up. For example, 32 plus 42 structures into 52, but 33 plus 43, in accordance with Fermat’s theorem, does not evolve into an entirety of x33-D-fold. Fermat’s equation applies for any numerical grade—in fact, tellingly, for any digital combination—as long as the power is 3 or higher.”

The award; The recognition

Cheers everyone!
It is always said to be that it completely depends upon the man whether to get over this issue or to live with it levitra viagra cialis forever. Having spares at your cheap sildenafil india http://robertrobb.com/putin-you-hockey-puck/ disposal at all times can be very helpful to you. One should never increase the dose, even if the product is freeze dried doesn’t tell anything about super active tadalafil the quality of the berry being used. This medicine works quicker than other ED medication and remains longer in the male body to give a harder erection just in few minutes. sildenafil 100mg
Back to the storyline, and the central points of discussions:

Universe Needing to Inflate

The abrupt inflation of universe in our cosmic history, its interrelatedness with the detection of gravitational waves, and seeing the necessity and order of the event of inflation itself

            “As enigmatic as it may sound, the scenario of expeditious growth does have healthy outlooks to support of the way we envisage the universe based on scientific judgments.”

In the Name of Science

The question of how do we amass interest and enthusiasm in science, its concepts and methodology. Then move further to have us all interested in seeking the true order of reality.

Interstellar

Do not miss out, if you like edutainment, especially with small dosages of science. You might pick up serious bits without having to try!

Grothendieck’s Deep Visions

The gravity of mathematics, and its followers: Alexander Grothendieck as an ardent devotee of anything deep and mysterious in mathematics

Continued in the next…

Share this:

Our Magnified Universe

 

 

 

IMG_0047

cialis generika http://icks.org/n/data/ijks/2017-5.pdf In this condition, a man cannot ejaculate at all. It is relatively safe when used correctly and that the patient strictly adheres to the medical professional’s specification. generic soft viagra on the other hand have been as admired as those of men. And cialis prescription canada it won’t be the last. It lowest prices on viagra could takes place on roughly any stage in their life. The awe inspiring topic of Our Magnified Universe– “Wondrous Universe: Our Truth in the Window of Science” was covered in TEDxSLU (of St. Louis University), along with other inspirational and delightful speeches and performances. We all steeped ourselves in enthusiasm and thrill as we navigated through the day bustling with activities, and ideas. A lot of credit goes to the organizers, mostly from St Louis University, for charting out such a well planned event. Take a peek at their initiative and the TEDxSLU event. Subjects as diverse as leadership, genetics, human relations, and pure scientific voices made up the fabric of the program. Interspersed were vibrating shows like salsa dance.

Coming to the subject of this blog, my talk overall gave a broad perspective of the book title Physical Laws of the Mathematical Universe: Who Are we? i. e., How can we come up with a scheme where all scientific descriptions, cosmic or quantum, make sense, and we see ourselves to be a part of the grand continuum. Following this initiation, was the introduction of the fascinating mathematics—how mathematics acts as a glue in seeing a truly real picture. I will try to post more on this event shortly.

See you soon,

Neeti.

Share this:

Interstellar

I had written this a short while ago. Thought it would be a good time to post it, for we all have a little more holiday-time flexibility to see a movie. So here it is.

Interstellar

Yes, the movie. After months of buzz blazed with mesmerizingly dazzling banners the much fancied, and anticipated by the physics and mathematics community and its writers, the blockbuster of Interstellar hit the theaters last Friday. I happened to be one of the patrons longingly waiting to sense through the full play at the first opportunity—for two prime reasons, and quite a few ancillary ones.

One, the intelligence of the subject—although the movie itself is a science-fiction, it unfolds by the descriptions and concepts of mathematical-physics that we currently employ to understand the continuum of space-time. I am not an admirer of all science fictions, but I would vote for this one without reservation. I can point to some of the bad examples of science fiction movies, but I do not want to upset directors and their followers! Anyhow, the second reason—actually is tied to the first one—being that the storyline fabric is composed with the consultancy of Kip Thorne, a notable theoretical physicists from California Institute of Technology, who has made wide inputs in both relativity and gravitational aspects of the grand universal design, accounting both the cosmic and quantum views.

Thus the architecture and workings of time dilation, black hole, singularity, higher dimension and parallel existences, and the theoretical wormhole—all playing out stunningly and enticingly on the IMAX silver screen—that stem from the unified understanding, are all incorporated into the flick with caution in what is palpably projectable.

Inter

The ravishing appeal of a “wormhole” tucked around the Saturn rings can’t be overstated. So is the singularity of a black hole, and, on a technical side, the coordinative view of the spinning spacecraft (in the poster above). But all this scientific bits isn’t what makes the play wholesome. It is the fusion of human elements by the scaffolding of scientific knowledge that brings out an edifying texture. That the subliminal bearings aren’t independent of space-time; that intellective and emotional renderings may play decisively; that personal footings and worldly pursuits aren’t mutually exclusive… I shouldn’t keep on or else it will become a truly fictitious reverie. The point is that the scrupulous account of modern views slotted subjective traces too into the same knit.

Although in a movie with such an expanded perspective everyone is bound to have their own censors. One apparent one for me was the time and again reference of “they,” for an idea of a fifth-dimensional programming to be reflected in the three-dimensional plane. Though the notion fitted nicely into the script plot, it wavered loose ends either on scientific grounds or otherwise. Another was the fuzzy description of wormhole, and its contrived mechanism, especially because the wormhole played a sincere role in the flow of the story.

At a general level though there seemingly lurks a slight barrier if we are to follow the narrative fully and precisely. The movie is more appropriately cut out for those who are already familiar with the avant-garde developments of mathematical physics, their strengths and loopholes, and a little background of it all. The movie has a great deal of information seeped all over, and those without background may risk them for a pure fantasy. There are contextual meanings echoing throughout the plot. The flick is a popular account of our three dimensional world that tries to bespeak the higher verbalization of the quantum multiverse. So the lack of a prior knowledge of the basics may lead to a delusional land.

You save your time by without needing to go to to your local pharmacy, and the type of medication you are prescribed will remain unidentified to others cheapest cipla tadalafil if you wish. Loss of libido (lack of free cialis without prescription interest in sex) is common in woman as compared to men. All versions of Kamagra With Energetic Sildenafil Citrate Sildenafil citrate purchase levitra online deeprootsmag.org is considered as the best solution of the disease. The drug store has made progressive medicines that have demonstrated their skills by giving prescription for ordering viagra ideal results. Thus those coming from a different background may like to browse through a popular science book on our current understanding of the space-time first.

Like around the end of the movie, an idea of “tesseract” abruptly crop up out of nowhere. Tesseract is a mathematical object, presenting a four dimensional version of a three dimensional cube. The object has played an indispensible role in our understanding of the higher dimensional plane, and the relativity that seeps through it all. But because of the lack of even a little referencing dialogue the value and beauty of the tesseract in that context can be missed by those who haven’t heard of tesseract, or its role in mathematical physics, beforehand.

A single mention of tesseract was enough though to enthrall math devotees.

I shouldn’t give out too many details in consideration of those who so far only meditated, and haven’t seen it yet.

Take a look. It is worth a three hours, and most of us won’t be disappointed. And let me know what fascinated you the most.

See you soon.

Have fun holidays.

Neeti.

Share this: