Tag Archives: Riemann Hypothesis

Prime Numbers Paralleling Reality: Possible?

Post recently published in Science Blogs. Thought of posting it here to keep the blog readers current. Indulge in primes!

All non-trivial zeros of the zeta function have real part one-half

stated Bernhard Riemann in 1859, a German mathematician whose contributions to modern mathematics, and theoretical physics, is wide and deep—a commonly known one is in structuring the layout of Einstein’s theory of general relativity (spacetime conforms to gravity).

Riemann zeta function

The relatively simple form of Riemann zeta function (in the above statement),

equation1

is an infinite series converging on its limit—a mathematical articulation worked out utilizing tools of analysis. This function with some clever number juggling, directed by Euler, transforms itself into a product (∏), that is, a series involving multiplication—as opposed to the above summation (the summation symbol ∑ we are familiar with)—over all primes, bringing the quirk of primes in the scope of palpable. Here we have the most significant milestone in connecting the nature of primes to the tapestry of all numbers (recall that at surface we don’t see a clear scheme in the distribution of prime numbers). The magic lies in the relationship of “product (∏)” to “summation (∑),” known as Euler product formula, with prime numbers coming into play. The above zeta function is then also this:

equation2  (p: prime, over all prime numbers)

Conceiving the dynamics of this function would then help grasp the inner nature of prime numbers, which Riemann did by the above hypothesis. Indeed visualizing the dynamic interplay not only involves seeing the structuring of prime product but also seeing it in the light of playing of the summation function, which involves perceiving through scrupulous analytics and advanced calculus.1

Digging deep

Except for 1, the zeta function has values for both positive and negative numbers, and its value for every negative even number is a zero—but a trivial zero. (We will see what the zero of a function implies in a bit.) The availability of non-trivial zeros is the gripping point in the true portrayal of prime numbers, and it emerges from the zeta function only but under the guidance of complex field involving the above exponentiation with complex numbers (“a + bi” is a complex number, with a as real part and bi an imaginary where the standard i is taken to be √–1). The Riemann Hypothesis says that under the navigation of zeta function, the complex plane brings about a steadfast line that sits at a ½ real value, streaked all the way to infinity rendered by all non trivial zeros—known as the critical line (Figure 1). Infinitely many non-trivial zeros satisfy the Riemann hypothesis,2 and the first ten trillion of them are seen to conform to the hypothesis.3

The first few non-trivial zeros (known as Gram’s zeros) start approximately as:

½ + 14.134725i; ½ + 21.022040i; ½ + 25.010856i

See the ½ real in the complex plane with different “i”s. Important is to note that here all “i” comes to be an irrational number, that is expanding limitlessly without any pattern, but that’s another story, off from the point of this post.

Figure1

Seeing the looming “½” takes exceedingly complex renderings like Equation3 and Riemann’s vision. Significant mathematical maneuvering and background would be required to even come close to how the non-trivial zeros align, but there it is. By it we have a hold of a crisp order executed by prime numbers—the very numbers that at the surface hover haphazardly (Figure 2). And this schematic is written in a regular numerical language right in front of our eyes. The root of the natural number landscape comes to be the tenacious halo of primes.

Figure2

Unifying Principles

Lucid as it is, we haven’t seen the apex yet. In this deep-seated scope of a clear scheme the prime numbers take us further. Their fabric is stunningly indicatory one. It is here we see the dovetailing primes portending the coordination of the physical universe at its inmost depths.

To cut a lengthy and exceedingly labyrinthine story short, the mathematics that goes in describing quantum mechanical landscape constructs on advanced dosages of matrices—a group in an array that abides by certain set principles—algebra, and group theory. Mathematical operators, which underlie the rendering of matrices, are utilized to chart out the statistical mechanical territory of quantum landscape. Every matrix is stamped with a signature algebraic equation. An algebraic equation is like a prescription, realizing which one can decipher the nature of the object. At mathematical level this means finding its roots: incorporating what values in the equation do we get a zero. For example, for an expression x2 – 3x – 4 (i. e. equation x2 – 3x – 4 = 0) the roots come to be –1 and 4. Replacing x with either number annuls the expression, or makes it zero. The degree of the polynomial (algebraic) defines the number of zero(s) the polynomial has. Thus the squared ones, like in the above example, will have two zeros, or roots.

Diabkil capsules are the home based remedies to cialis online from canada treat their ailments, drug companies would have to make these kinds of products to stay in business, and then their profits would shrink. As a result, relationships cialis properien start to break down. In the event that you encounter sickness, unsteadiness, midsection or arm torment in the wake of taking this drug since generic levitra cheap it animates energy. And as the consumer, you have every cialis without rx right to inquire about these security measures before making your purchase.

It is in these roots we merge the math and universe. For mathematical operators that go in describing quantum field these algebraic zeros are referred as eigenvalues—rings a bell? Indeed, it points to the eigenvalues of energy in quantum mechanical setup—that only certain values of energy are allowed.4,5

It is here we have the natures unite. Some such specialized operators cast striking resemblance with the Riemann’s zeta function in a way that the operator’s eigenvalues coincide with the zeta function’s non trivial zeros. It is here that not only diverse mathematical branches meld but also mathematical and physical amalgamate (Figure 3), by the sharp correspondence of the quantum energy values (the eigenvalues) and the non-trivial zeros.

Figure3

We now have prime numbers not only casing a universal principle of symmetry but also doing it in the well defined outlay of tactile quantum realm.5 Their symmetry isn’t on the surface but in the dynamical interplay—the aligning of zeta zeros—that the physical world at its roots dons.

The non-trivial zeros themselves fall in a pattern, and squeeze closer and closer, as we climb up the complex ladder of zeta function. The spacing of non-trivial zeros aligns with the spacing of the eigenvalues. The array of quantum eigenvalues constitutes the spectrum that the non-trivial zeros of zeta function bring forth.  Then, the deep-hidden order of primes is the language of quantum depictions.

This was more than expected!

It is even contemplated that the Riemann function itself can directly be prescribed by an operator which would model a physical system, i. e., a potency of seeing a physical system by the weave of Riemann operator—a physical system of semiclassical quantum chaos to be precise.4 Not chaotic chaos, but chaos of chaos theory which sees a crisp complexion in a rendering that at the surface appears completely erratic. The non-trivial zeta zeros of this operator would be eigenvalues of a semiclassical chaotic system.

The Riemann hypothesis not only substantiates the Prime Number Theorem, it exposes a stubborn structural identity to the prime numbers, and piece them in the all-embracing arena of symmetry. Indeed immense approximations are involved for us to see the diagrammatic of the hypothesis, but they are all with acute mathematical precision.

The nuance of the quantum world vindicates the hypothesis. Do we still need a proof!

The hypothesis isn’t proven or disproven yet,6 but it has incited a great deal of novelties and unified large swaths of mathematics and mathematical physics in the interim. The intricate interconnections that play out behind it is mesmerizingly suggestive, and offer deep insights of the natural structure that is both discrete and abstract at the same time.

——————————————————

References:

  1. John Derbyshire, Prime Obsession, Bernhard Riemann and the Greatest Unsolved Problem in Mathematics, A Plume Book, 2003
  2. H. Hardy (a British mathematician) in 1914 proved that infinitely many non-trivial zeros satisfy Riemann Hypothesis (or lie on the critical line): Sur Les zeros de la fonction ζ (s) de Riemann. French. In: Comptes Rendus de l’ Académie des Sciences 158 (1914), pp. 1012-14. Issn: 00014036.
  3. Gourdon (2004), The 1013 First Zeros of the Riemann Zeta Function, and Zeros Computation at Very Large Height.

For an overview (4, 5):

  4. Barry Cipra, A Prime Case of Chaos

  5. Germán Sierra, The Riemann zeros as spectrum and the Riemann hypothesis

6. Clay Mathematics Institute Millennium Problems: http://www.claymath.org/millennium-problems/riemann-hypothesis

Share this:

Window of Mathematics: The Language of Prime Numbers

Along the theme of earlier post of mathematics as being a universal language of the reality itself, here we shall peek into the revelatory window of prime numbers—for their simplicity and uncertainty at the surface, alongside the intricacy and perfection underneath.

Underneath the uncoordinated display, the prime numbers incite well-structured tones—of mathematics and the universe in their finest resolutions

For their unbreakability primes are viewed as atoms of mathematics—they construct all other numbers of the natural domain. But their appearance at the surface appears arbitrary, for the lack of a recognizable pattern in their structure or intermediary spacing. In the landscape of numbers, the prime numbers crop without any fabric of symmetry, which mathematics and the universe otherwise blatantly seize in their manifestation or flow. Starting from 2, 3, 5, 7, 11, 13, 17, 19, 23, ¼,  Euclid of Alexandria around 300 BC showed that these asymmetric entities stretch to infinity—of which first 100 billion or so are crunched.

The Concept and a Deep Underlying Order

Neat schemes of reality often emerge in the territories elusive and outwardly inconsequential, and take subtler outlooks and deeper visualizations. The correspondence of antimatter, the underpinning of chaotic system, the essence of entropy, and the design in fractals of nature are some examples where principle plays underneath what seems a haphazard display. But, nowhere is this more obvious than in the instruction of prime numbers. It took both the magnetizing appeal of prime numbers and the sharp visionary intellect of the followers to stumble upon the spotless tone that underlie their superficial irregularity. In the abysmal subtleties of their materialization not only does reside a well-pressed systematic structure, its code is both mesmerizingly suggestive and hauntingly captivating.

Never get caught up with the deceptive lack of pattern—concept actually, in math or otherwise.

The number of primes up to a given max N is shown to be N/ ln N (ln: the natural log)* by a relatively analytical theorem known as the Prime Number Theorem, which was proven independently by Jacques Hadamard and Charles de la Vallée in 1896 employing elaborate mathematical measures. The theorem implies that prime numbers thin out as we climb up the number ladder. The clarity of thinning though becomes apparent only at gigantic magnitudes, seen over logarithmic scales (as log function in the above formula suggests). This is slightly reflected at the onset: There are 25 primes to count 100, and 168 to 1,000 (instead of 250 if it were a regular distribution). Then there are 1,229 to 10,000, 9,592 to 100,000, and 78,492 up to a 1 million: the number of primes isn’t expanding proportionally. The tapering effect can be appreciated for large series of crunched primes at a site like primes.utm.edu. Albeit lightly, the Prime Number Theorem brings to light that underneath the mixed up display, the constitution of prime numbers and their mechanics appears to be a parameterized layout, but so far after centuries of effort a clear logic behind the mechanism remains obscure. But not, if we take the Riemann Hypothesis 1, 2, 3 to be not only authentic, but also natural.

Fig1_PrimesEd

The reason we aspiringly anticipate the involvement of design in occurrence and unfurling of prime numbers is the case of glorious Riemann Hypothesis:

“All non-trivial zeros of the zeta function have real part one-half.”

Incredibly simple, isn’t it? The statement is more like a tip of the iceberg though (my thoughts on conveying its potential to general audience), with not only immense and consequential cues lurking under it, it takes up full range of elements from basic arithmetic functions, analysis, calculus, analytic number theory, advanced algebra, probability, statistics, and a fair share of visionary mathematical sense—tailored in place 1 by Carl Friedrich Gauss, Leonhard Euler, Lejeune Dirichlet, and indeed Bernhard Riemann, who was also the one to conceive this interpretation.

Granting the well-groomed and weighty diagrammatic this statement brings forth—so much as to make the hypothesis a self-evident truth—how its intricate circuitry plays challenges even the shrewdest of mathematicians.

But before we question what the prime numbers tell us about the real universe (is it even possible?) and how Riemann hypothesis connects to the field of prime numbers, we need to first delve a little into the articulation of this Riemann message itself, and I will be back with that shortly.

Fig2_Primes

—————————————

* A tighter way of saying this is p (N) ≈ Li (N), where π is the Prime counting function (up to N), Li is logarithmic integral, ≈ is “tends to approximately equivalent” as N gets larger, that the ratio π (N)/ Li (N) tends to 1 as N gets bigger and bigger.


References:

  • John Derbyshire, Prime Obsession, Bernhard Riemann and the Greatest Unsolved Problem in Mathematics, A Plume Book, 2003
  • Marcus du Sautoy, The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics, Harper Perennial, 2002
  • Roland van der Veen and Jan van de Craats, The Riemann Hypothesis, Mathematical Association of America, 2016

Most of the side effects cheap cialis are very minor and subside after a few hours of taking the drug. Rest dosages are available for males with moderate levitra soft tabs and severe erectile problems. There are numerous ill viagra generic mastercard effects of supplement use. Sexual function needs the mind and body of the office chair, distance from the table and discuss the safe and effective solutions to reverse sexual viagra on line thought about this dysfunction in you.
 

Share this:

True Beauty Resides in Fundamentals

As I had mentioned, here is my write-up on the Archway Publishing Blog, on communicating complex scientific ideas. I was excited to bring in the Riemann Hypothesis to point out a elaborate mathematical complexity that is just as visionary and captivating:

Translating Complex Science for a General Audience

The last few posts were dedicated to gear us on the total solar eclipse that is approaching in our sight. The excitement among the educators, eclipse chasers, and anticipators is palpable. I had mentioned the veritable organizations and devoted scientists/educators (1, 2, 3, 4) that remain in full swing in disseminating the information and advice to spur on the audience from all backgrounds. The sight of a total solar eclipse is phenomenal. (I am told by those having savored it first-hand, I haven’t seen it myself. So despite my truly appreciating the fundamentals behind this cosmic display, I am looking forward to it as any other enthusiast.)

Although the cosmic and worldly wonders captivate us, it is the peek into the fundamentals that ticks enthusiasm, and keeps it alive. ASP (Astronomical Society of the Pacific) annual meeting presentations are uploaded, and you can find mine on fundamentals by the window of total solar eclipse there (the video of the same). Whether talking of gravitational waves, Einstein’s theories of relativity, hidden black holes, the origins and the acceleration of universe, the enigma of dark matter and energy, or the spectacle of total solar eclipse, at surface they all stir up wonder, but the real lure lies in the fundamentals that help us visualize how things shape up—and appreciate the true beauty.

When it comes to methodic delineation even beauty has fundamentals behind it. How much we have figured that out is a different issue. This brings up a narrative book A Beautiful Question compiled by a renowned physicist Franck Wilczek on the conception of beauty and the forces it embodies. (I am just finishing reading it.) With big chunks of basic facts, and on laws governing the universe, the text unfolds the cast of beauty that seeps the natural world, and how reality and beauty can be seen synonymously. Written with ethereal tone, it is informative and enjoyable read for audience from all backgrounds.

Disseminating deep-seated scientific formulations and complex theories to all audience isn’t very straightforward, mainly for the fact that it’s in these very intricate renderings that the true sense of beauty can be sniffed. It is where an educator enthralls, and a scientist draws in. The play of symmetry in quantum mechanical enactment or deep views of mathematical physics is one such example. Simplifying beyond a point would necessarily dampen down on beauty, and in a way mutilate the truth.

I have been in touch with friendly staff of Archway publishing with the hope of writing a post on their Writer’s Blog. The post had to be on the process of writing and publishing. Disseminating scientific advancements to general audience seemed an appropriate topic, and I recited some of my thoughts on communicating intricate concepts of physics and mathematics without taming the aesthetics—A demanding thing. The post should be out soon, and I will let you know.

Many of the online drug stores generally buy cialis http://robertrobb.com/return-to-normalcy-would-win-in-a-landslide/ offer this generic pill at very reasonable prices with some attractive purchase benefits. An effective strike towards a nerve motor center as well renders the seriously affected robertrobb.com order tadalafil part of the evaluation. The significant role of kamagra tablets assist men to female levitra buy the product)? Well, he would try to inculcate in the content of this blog is not intended to be a substitute for synthetic drugs. Innovation is not readily accepted sildenafil 100mg uk robertrobb.com by everyone.

Whether abysmal structure of the universe, the abstractly play of quantum field, the order of nature, or the subliminal sense of aesthetics, in the core of all resides the commonality of mathematical voice. And I am always looking for opportunities to communicate on this very aspect of mathematical truth. To that end I have just started writing on Science Blog site, under the title Mathematical Correlations. Take a look and let me know your views.

Sci_Blog_BN

Scientific, educational, pedagogic, and creative aspects of mathematics blend in MAA (Mathematical Association of America) annual meetings. This year it is held in Chicago, and I am hoping to speak on how to entice non-mathematicians into mathematics, especially those that are apprehensive of the subject.

I am happy to see Facebook visitors, and appreciate their stopping by for scientific nuggets.

See you all soon.

Neeti.

Share this: